MUSCLE INJURIES- A PHYSIOTHERAPIST'S VIEW


Types of Skeletal Muscle Injuries

Literature study does not reveal great consensus when it comes to classifying muscle injuries, despite their clinical importance. However, the most differentiating factor is the trauma mechanism. Muscle injuries can therefore be broadly classified as either traumatic (acute) or overuse (chronic) injuries.
Acute injuries are usually the result of a single traumatic event and cause a macro-trauma to the muscle. There is an obvious link between the cause and noticeable symptoms. They mostly occur in contact sports such as rugby, soccer and basketball because of their dynamic and high collision nature .
Overuse, chronic or exercise-induced injuries are subtler and usually occur over a longer period of time. They result from repetitive micro-trauma to the muscle. Diagnosing is more challenging since there is a less obvious link between the cause of the injury and the symptoms . 

MUSCLE STRAIN:

A strain to the muscle or muscle tendon is the equivalent of a sprain to ligaments. It is a contraction-induced injury in which muscle fibers tear due to extensive mechanical stress. This mostly occurs as result of a powerful eccentric contraction or overstretching of the muscle. Therefore, it is typical for non contact sports with dynamic character such as sprinting, jumping
Grade I (Mild)
  • Strains affect only a limited number of fibers in the muscle. There is no decrease in strength and there is full active and passive range of motion. Pain and tenderness are often delayed to the next day.
Grade II (Moderate)
  • Strains have nearly half of muscle fibers torn. Acute and significant pain is accompanied by swelling and a minor decrease in muscle strength. Pain is reproduced on muscle contraction.
Grade III (Severe)
  • Strains represent complete rupture of the muscle. This means either the tendon is separated from the muscle belly or the muscle belly is actually torn in 2 parts. Severe swelling and pain and a complete loss of function are characteristic for this type of strain. Th is is seen most frequently at the musculotendinous junction.


MUSCLE CONTUSION:

A bruise, or contusion, is a type of hematoma of tissue in which capillaries and sometimes venules are damaged by trauma, allowing blood to seep, hemorrhage, or extravasate into the surrounding interstitial tissues. Bruises, which do not blanch under pressure, can involve capillaries at the level of skin, subcutaneous tissue, muscle, or bone. As a type of hematoma, a bruise is caused by internal bleeding into the interstitial tissues which does not break through the skin, usually initiated by blunt trauma, which causes damage through physical compression and deceleration forces. Trauma sufficient to cause bruising can occur across a wide range of sports. Bruises often induce pain, but small bruises are not normally dangerous alone. Sometimes bruises can be serious, leading to other more life-threatening forms of hematoma, such as when associated with serious injuries, including fractures and more severe internal bleeding. The likelihood and severity of bruising depends on many factors, including type and healthiness of affected tissues.

Muscle Cramp

Sudden, involuntary muscle contraction or over-shortening; while generally temporary and non-damaging, they can cause mild-to-excruciating pain, and a paralysis-like immobility of the affected muscle(s). Onset is usually sudden, and it resolves on its own over a period of several seconds, minutes, or hours. Cramps may occur in a skeletal muscle or smooth muscle. Skeletal muscle cramps may be caused by muscle fatigue or a lack of electrolytes (e.g., low sodium, low potassium, or low magnesium).

Muscle cramps during exercise are very common, even in elite athletes. Muscles that cramp the most often are the calves, thighs, and arches of the foot. Such cramping is associated with strenuous physical activity and can be intensely painful; however, they can even occur while inactive/relaxed. Around 40% of people who experience skeletal cramps are likely to endure extreme muscle pain, and may be unable to use the entire limb that contains the "locked-up" muscle group. It may take up to seven days for the muscle to return to a pain-free state.
According to Brukner & Kahn  disturbances at various levels of the central and peripheral nervous system and skeletal muscle are involved in the mechanism of cramp and may explain the diverse range of conditions in which cramp occurs. Other popular theories as to the cause of cramps include dehydration, low potassium or low sodium levels, inadequate carbohydrate intake or excessively tight muscles but these hypotheses appear to be falling out of favor as the weight of evidence supports the ‘neural excitability’ hypothesis.




Comments